UNION STATION EXPANSION AND RESTORATION

WASHINGTON DC

TECHNICAL REPORT II

Prepared By: Joseph W. Wilcher III

Structural Option

Prepared For: M.K. Parfitt

Joseph W. Wilcher III Structural Option		Union Station Expansion Washington DC
Adviser: M. K. Parfitt	Technical Report II	October 24, 2008
TABLE OF CONTENTS		
Executive Summary		2
Structural Systems		
Foundation		3
Lateral System		3
Floor System		4
Structural Plan Layout.		5
Code & Design Requirements		
Codes & References		6
Gravity & Lateral Loads		
Dead / Live Loads		7
Existing Floor System		8
Alternative Floor Systems		
Pre-Cast Double Tees .		10
Composite Floor Syster	n	
Flat Plate with Drop Pa	nels	14
Conclusion		
Appendix		
A: Plans & Sections		17
B: Post-Tension Calcula	ations	
C: Double Tee Calculat	ions	
D: Composite Floor Sys	tem Calculations	
D: Flat Plate with Drop	Panels Calculations	

Technical Report II

EXECUTIVE SUMMARY

For this technical report, a study of alternative floor systems for the expansion to Union Station was done. A total of four systems, three new and the existing, were designed and compared to determine the viability for each one. Currently in Union Station, a post-tension design is used due to the long spans required throughout the building for the lower floors and the weight limit allowed on the soil. While this system is adequate to handle the criteria for the building, the author of the technical report looked at the following alternative floor systems for Union Station:

- 1) Pre-Cast Double Tee
- 2) Composite Floor Deck
- 3) Flat Plate with Drop Panels

During discussions between Professor M.K. Parfitt and the author, a different approach will be used for this technical report. Instead of using each floor system throughout all levels of Union Station, each new floor system was viewed at different levels of the building. This leads to the option of having a transfer level in Union Station where two of the new systems would meet and transfer the loads from one to the other. Since designing the transfer level is not part of the requirements for this technical report, the author and M.K. Parfitt concluded this could be a topic of interest to explore as the depth option for the thesis proposal.

Based on the typical bays used and redesigning the bay layouts to make the alternative floor systems to work, the author believes that the use of the pre-cast double tee would be beneficial on the lower floors and the composite system would work on the upper levels. Starting on page 8, descriptions of each system with advantages, disadvantages and how each system could work in Union Station. To view why the author selected pre-cast double tees and the composite system for the two floor systems, refer to the conclusion on page 16 of this report.

EXISTING STRUCTURAL SYSTEM

Foundation:

Union Station's expansion main foundation system consists of concrete piles and supportive columns that rest of spread footers. On the Track Level, the foundation is visible for passengers traveling on a locomotive or waiting on the platforms to notice.

All the columns and piles are located between the eight locomotive rail ways that are part of Union Station. Typical diameter size of the columns and the piles are 1 ½' and are spaced 22'-0" from each other (in a straight line between the rails).

The net soil bearing capacity for the site is 1000 PSF and each column and pile was designed to carry a typical load of 250 kips. Fine to coarse sandy clay fill is the typical soil located on the site for Union Station according to the geotechnical report. The columns and piles rest upon spread footers which either have a dimension of 6'-0" x 6'-0" x 2'-0" or 12'-0" x 12'-0" x 2'-0" ($I \times w \times h$).

Lateral System:

Union Station's lateral load system is composed of an ordinary reinforced concrete moment frame. Lateral loads, as well as the gravity loads, reach the foundation of Union Station by first traveling through the beams, then carry through the girders which connect to the columns. From there, all loads travel down in the columns to the ground level and then the piles and columns take all the loads into the spread footers. Not all beams and girders take part of the lateral system in Union Station. To view the beams and girders which do not act as part of the lateral system, refer to Appendix A, Figure 1.

It is important to note that the existing structure and the addition of Union Station do not share a lateral system. Steel Chevrons are used as the lateral system for the existing structure of Union Station. Since the expansion and the existing structure do not share a column line, an expansion joint was placed between column lines 7 and 7-1 (Refer to Appendix A, Figure 1).

Since the author will be looking at different floor systems in this technical report, the lateral system for each system would change. For this report, the author realizes will not take into account a new lateral system. In future technical reports and part of a thesis proposal, the author would investigate the design of a new lateral system with the selection of the new floor system(s).

Technical Report II

Existing Floor System:

The typical floor system for the expansion to Union Station is a two-way post-tension cast-in-place concrete slab with a thickness of 7". All the beams and girders are post-tension cast-in-place as well. In Union Station, the beams span a length of 63'-0". The girders located in the expansion, carry the load from the beams to the columns and have a typical span of 24'-4" throughout the expansion. The concrete compressive strength for the slabs, beams, and girders is $f'_c = 5000$ psi. It is to be noted that the floor systems for the expansion and the existing structure for Union Station do not connect with each other.

For the Ground Level, a 6 $\frac{1}{2}$ " concrete slab was used for majority of the floor. A composite design located along the west elevation was utilized to help reduce the weight within the weakest are of the site. A 5" light weight concrete slab over 1 $\frac{1}{2}$ " gage LOK-Floor was used which makes the ground floor total thickness to be 6 $\frac{1}{2}$ ". Shear studs sized at $\frac{3}{4}$ " x 4 $\frac{1}{2}$ " were used in the composite floor design. The typical member size for the beams is W27x84 which span 63'-0" and tie into a W33x118 girder. The girders tie into the concrete columns that are part of the foundation system.

There are two typical bay sizes located in the expansion of Union Station, $63'-0" \times 27'-6"$ and $63'-0" \times 40'-0"$. Since the tracks running through Union Station were the major consideration in the design as well as the bus terminal, the use of long spans was concluded as the best approach for the design. For this report, the bay size of $63'-0" \times 40'-0"$ will be analyzed in order to obtain results that can be applied throughout the rest of the structure. Figure 2 in Appendix A shows the area used to analyze the existing structure.

Technical Report II

Structural Plan Layout:

As mentioned in the executive summary, each new floor system will be analyzed for different levels throughout Union Station. For the levels consisting of the bus terminal, mezzanine level, and the first floor, the use of the pre-cast double tee floor system can be utilized due to the high floor-to-floor levels (Refer to Figure 3, Appendix A). For the remaining levels, the use of either the composite metal deck or flat plate with drop panels can be used with the use of office space and parking.

For the pre-cast double tee floor system, the existing spans in the east/west direction are used, but the spans in the north/south direction will be reduced in half to 31'-6". The decision in the reduction of the span is to ease the double-tees from being overloaded from the required loads. This decision will also help in the location of columns and walls for the floor system.

To achieve a layout for the composite floor deck and the flat plate with drop panels, revisions of the upper floors were done by the author. Since parking and office space are the main uses on the upper floors, smaller spans can be achieved in both situations. In Appendix A, Figures 4 and 5 show a basic typical structural floor plan for each of the two systems. It should be noted that the plans do not include any areas for the elevators and stairs. If the author decides to take the route of designing the transfer level for the proposal, more detailed plans in architecture and structural design would be looked at.

CODE AND DESIGN REQUIREMENTS

The following two tables represent codes used for the design of Union Station by the engineers in practice and the codes used by the author of this technical report. Since Union Station was designed with older edition of codes, values for loads and member sizes could be off depending if any significant changes were made for the new codes.

CODES & REFRENCES (USED BY DESIGN TEAM)
"DC Building Code 2003"
"International Building Code 2000" (as amended) – International Code Council
"DC Building Code Supplement 2000" (DCMR 12A)
"Building Code Requirements for Structural Concrete (ACI 318-02)" – American Concrete Institute
"ACI Manual of Concrete Practice 2003" – American Concrete Institute
"CRSI Handbook", 2002 Edition – Concrete Reinforcing Steel Institute
"PCI Design Handbook, Fifth Edition" – Precast/Prestressed Concrete Institute
"PTI Design Manual, Fourth Edition" – Post Tensioning Institute
"Manual of Steel Construction" – American Institute of Steel Construction, Inc.
"ASCE 7-05", Minimum Design Loads for Buildings and Other Structures – American Society of Civil Engineers

Table 1: Codes & References Used by Design Team

CODES & REFRENCES (USED IN TECHNICAL REPORT II)
"International Building Code 2006"
"PCI Design Handbook, Sixth Edition" – Precast/Prestressed Concrete Institute
"Manual of Steel Construction, Thirteenth Edition" – American Institute of Steel Construction, Inc.
"ASCE 7-05", Minimum Design Loads for Buildings and Other Structures – American Society of Civil Engineers
"Building Code Requirements for Structural Concrete (ACI 318-08)" – American Concrete Institute
"Vulcraft Steel Roof and Floor Deck"

Table 2: Codes & References	Used in	Technical Report II
-----------------------------	---------	---------------------

Deflection Criteria:

Total Deflection:	l/240
Live Load Deflection:	I/360
Construction Load Deflection:	I/360

Technical Report II

October 24, 2008

GRAVITY LOADS

The following chart shows the gravity loads were determined from ASCE 7-05 by the engineers in practice and by the author of this technical report. All loads were used by the author that the engineers used and the author used additional loads that felt were important in include in the calculations. Since additional loads were used by the author, loads and members sizes could have increased in some areas of the structure.

GRAVITY LOADS										
Dead Loads:	Weight	Used By Design Team	Used By Author							
Lightweight Concrete	120 pcf	Yes	Yes							
Steel	490 pcf	Yes	Yes							
M.E.P.	10 psf	Yes	Yes							
Fiishes & Misc.	5 psf	No	Yes							
Live Loads:										
Office	50 psf	Yes	Yes							
Stairs	100 psf	Yes	Yes							
Landings	100 psf	Yes	Yes							
Lobbies	100 psf	Yes	Yes							
Mechanical	150 psf	Yes	Yes							
Parking	50 psf	Yes	Yes							
Partition	10 psf	No	Yes							

Table 3: Gravity Loads

EXISTING FLOOR SYSTEM I: POST-TENSIONING

Description:

Post-tensioning is a method of reinforcing (strengthening) concrete with high-strength steel strands or bars, typically referred to as tendons. A typical tendon is composed of 7, $\frac{1}{2}$ " Ø with a strength of 270 ksi. Each tendon is placed prior to the concrete is poured in the form work and one side is anchored. Once the concrete is placed and reaches a certain strength, each tendon is jacked from the lose end until it becomes a tight strand. Additional reinforcement is used with the tendons to prevent the concrete from failing if any problems arise within the concrete. Figure 1 shows tendons and other reinforcement resting in place before concrete is poured.

Figure 1: Image of Tendons Provided by Suncoast-PT

Advantages:

Post-tensioning allows longer clear spans, thinner slabs, and fewer beams throughout a building. Thinner slabs mean less concrete is required, which can reduce the cost of the building's structure significantly. Reduction in a building's weight versus a conventional concrete building can be achieved with the use of post-tensioning. This reduces the foundation load and can be a major advantage in seismic areas or in places where the soil cannot support a heavy building.

Disadvantages:

Unless a building's design has long spans or needs to be lighter than normal, post-tensioning should not be considered as the design. When jacking the tendons to meet the required strength, it is important to jack at a consistent rate. If jacked improperly or not placed correctly before the concrete is poured, a tendon can snap and rupture through the concrete. This problem can not only cause a delay in the completion of the building, but can also be dangerous to a life around the tendon when it snaps.

Technical Report II

Design for Union Station:

In the design phase for Union Station, realizing there are trains traveling through and stopping, a bus terminal on the ground floor, and parking on the upper levels, post-tensioning is considered a good choice for a floor system for the entire building. Taking advantage of the long spans, reduction of amount of columns, and slab thickness post-tensioning can offer, the use of this slab system was a fine call by the designers. The typical bay in Union Station has around 20 tendons spanning in the east-west direction of the building. Since long spans exist in the structure, post-tensioned beams and girders were used as well to help the slab from reaching a critical deflection. One main disadvantage with using this system within Union Station is how difficult the system is to install. The time for a post-tension system for erection is longer than most of the other structural systems used in practice and more labor is required to install this floor system.

Appendix B contains calculations for the existing post-tension structure. The author calculated the balanced load and the effective force used in the existing bays. From the calculations, the results are within 15% from the designer. One major cause of the difference in results could the assumptions the author used. Another is the possibility of a calculation error somewhere in the process. Since there are post tension beams and girders that tie into the slab and columns, the author recognizes that the knowledge at the time of this technical report is not sufficient enough to continue on with checking the system. For the third technical report, the author will use this report to check the existing structure.

Technical Report II

October 24, 2008

ALTERNATE FLOOR SYSTEM I: PRECAST DOUBLE TEES

Description:

Double tees come in variety of sizes and can span long distances. Typically the most common sized used is 12'-0". A double tee is supported by either an inverted "T" beam or "L" beam, which is used for an edge. From either the "T" or "L" beam, the loads travel to columns which can be spaced further than what most typical layouts are designed for. Typically, ½ Ø, 270k tendons are used as the reinforcement bars for all the precast

members. Figure 2 shows a general layout of a double tee connection to an inverted "T" beam.

Figure 2: Double Tee System Provided By FRS

Advantages:

Using precast concrete double tee beams can give you several advantages for a floor system. The most beneficial use of precast is its quick and steady installation. There is no down time on the job site required for concrete to be formed, poured, finished and set. Double tee products arrive on-site and can be placed immediately. Precast products provide the consumer with a high quality product that is fabricated in a controlled working environment and can be installed year round. No additional fire protection is required for a double tee since it is incorporated by the plant that creates the members.

Disadvantages:

While using precast double tees can save you time in erection, specialized labor must used to install the products. Depending on where you project is located and the time given for erection, finding the correct group of installers might be difficult. The depths of the stems on each precast member can cause problems for a project that requires a high floor to floor height. Also, a topping slab might be required as well. Not only does this reduce the floor height, but you also must account for continuity in the topping as well.

Technical Report II

Design for Union Station:

Using PCI Design Handbook, 6th Edition, the designed floor system incorporates the use of precast 8'-0" wide double tees spanning a length of 40'-0". The selected tees utilize lightweight concrete and are 24" deep with a 2" normal weight concrete topping for continuity of the floor surface. This gives an overall depth of 26" with a 4" finished slab depth. The tees are reinforced using (4) ½ Ø, 270k tendons within 5,000 psi concrete. The 4" thick slab depth is adequate for the 2 hour required fire rating. The inverted "T" beams are designed as 34IT36 beams and the edge "L" beams are designed as 20LB32 beams. Refer to Appendix C for calculations regarding the double tee floor system.

Double Tees can be a good choice for a floor system for the ground level, mezzanine level, and first floor since the floor heights are higher than normal. This will not create problems with the depths of the double tees for each of the floors. Since double tees can span a long length, ground floor can still achieve the architecture of the bus terminals as well for the track level. The only major issue that can be noticed as of right now is that the placement of the columns and walls for the loads that come from the double tees beams. A further investigation in the future would be necessary to see where issues would arise.

Technical Report II

October 24, 2008

ALTERNATE FLOOR SYSTEM II: COMPOSITE FLOOR DECK

Description:

Composite floor deck is complied of three main components; metal deck, concrete, and a steel member. The load path for this system starts with the concrete and the metal deck. To have the loads travel from the floor to the steel members that act as the beams in the composite design, steel shear studs are used as transfer points in the system. Once the loads reach the beams, they travel through the girders and then to the columns. The amount of shear studs used on each beam is determined by the thickness of the slab (concrete and metal deck) as well as the span used in a bay. The size of the metal deck, beam and girders depends on the load used in a single bay. Figure 3 shows a section of a composite floor deck.

Figure 3: Composite Deck Provided by EPIC

Advantages:

A composite floor system is one that can be erected quickly and easy to construct in the field. The system also comes with a fire rating that can either be sprayed on or if the engineer designs according to ANSI/UL 263, no additional fire proofing is required. In office areas, this is ideal for open column free tenant spaces and also works well as an acoustical barrier. Construction for this floor system is quick which helps reduce the cost the time to complete the structure down.

Disadvantages:

One major concern when using a composite system is possible lower floor to ceiling heights. If a beam or a girder becomes deeper than expected, the use of the system would not be practical. In the case that the steel members are deep, then the structural system would be heavier than other systems. A heavy building could cause problems in a seismic region or a site that has weak soil.

Technical Report II

Design for Union Station:

Using the Vulcraft floor deck catalog, a 2VL16 metal deck with a total thickness of 5 ¼" was determined as the adequate design. The author took advantage of using ANSI/UL 263 by using 3 ¼" of lightweight concrete (110 pcf) on top of a 2" thick metal deck. This results in no additional fire proofing required for the floor system. Each beam designed in the bay looked are a W16x31 and span a length of 30'-0". A total of twenty ¾" Ø shear studs will be used to transfer the load from the floor to the beams. The beams connect to a steel girder which was sized as a W21x62, span a length of 39'-0" and uses 38 shear studs. Refer to Appendix D for calculations regarding the double tee floor system.

For the upper levels of Union Station, this would be an adequate system to use for both the office spaces and the parking. A thin slab works for the upper levels which increases the floor height. The composite design also has low transfer of vibrations between levels. This would be beneficial for the levels with parking above the office spaces to prevent sound transfer from each level. The floor system is easy to construct and is time saving during construction. One concern for this floor system to consider is areas that would have a significant deep member. When the author redesigned the floors as a preliminary design, there is an area that spans a length of 42'-0". This bay has the potential of the girder being deeper than normal (Refer to Appendix A, Figure 4). For future investigation, the author would consider redesigning the layout to reduce the length of the bay to prevent the chance of a deep member.

Technical Report II

October 24, 2008

ALTERNATE FLOOR SYSTEM III: FLAT PLATE WITH DROP PANELS

Description:

A flat plate floor system is essentially a flat slab floor with no beams in the structure. The drop panels are a thicken portion of the slab which can either be in a rectangular or circular region centered on the columns. Each drop panel helps increase the shear strength of the floor system in the critical region around the column and provide increased effective depth for the steel in the region of high negative bending moment over the support. Typically flat slabs are used for live loads of 100 psf or more and for spans up to 30 feet.

Figure 4: Flat Plate W/ Drop Panels

Provided by Univ. of Cal. Berkeley

Advantages:

Flat plate with drop panels can manage a significant amount of live load with a relatively small slab thickness. The thin section of flooring allows for a higher floor-to-floor dimension. A flat plate also fits well with a grid of columns and bays. Since the concrete is dense, no additional fireproofing is needed for the floor system. The floor system has above average as an acoustical barrier for vibration in the floors. Concrete needs minimal formwork and only basic field labor. Columns can also be made of reinforced concrete which would lead to the use of shear walls to handle the lateral forces.

Disadvantages:

Use of a concrete flat slab needs a rather exact ratio of column spans, which doesn't always guarantee an open plan. In fact, this ratio requires a smaller sized bay which could mean more columns, which can lead to a heavier building. The increased amount of concrete requires an increased amount of reinforcement. Since the columns are also reinforced concrete there is a complicated construction of intermingled reinforcement where columns and floors meet which can extend construction time.

Technical Report II

Design for Union Station:

Using the design requirements from ACI 318-08, a 7 ½" slab composed of lightweight concrete (120 pcf) with a 3" drop panel was determined to be sufficient to carry the required loads. No additional fire proofing for the floor system is required because the required depth coverage is used from ACI. Number 5 bars were used as the reinforcement steel throughout the 30'-0" x 19'-6" bay analyzed in this technical report. The assumption of using an 8'-0" x 8'-0" drop panel and a 24" x 24" column was used and the author realizes the dimensions of the panel could be smaller. Since (16) #5 bars were determined as the reinforcement for the middle strip of the slab, the author believes there are sufficient bars in the slab. Looking at a higher bar size can result in a decrease of bars used. Further investigations would be needed to determine the most efficient flat slab with drop panel system for Union Station. Refer to Appendix E for calculations regarding the double tee floor system.

For the upper levels of Union Station, a flat plate with drop panels would work efficiently in the parking areas. The columns could be placed accordingly to allow for the maximum amount of spaces. The system can work for the office areas, but the office areas would not have an open floor area. Vibrations would not be transferred between levels since the slab acts as an acoustical barrier. Since there are more columns for this system, the weight of the building has the potential of becoming heavier. Due to the weakness of the soil on the site, this system on the upper levels could cause problems with the foundation. As stated in the above paragraph, further investigation would have to be conducted in order to determine the efficiency of the flat plate with drop panels.

Technical Report II

CONCLUSION

Throughout this technical report, each system was looked by the advantages, disadvantages, and how each system could work for Union Station. While the existing post-tension system works adequately in the entire structure, the author believes it is not the best system for Union Station. Since the major concern for Union Station was the location of the tracks, the use of long spans was determined to be used throughout the building. Respecting the concept used by the design team, the author suggests using two different systems in Union Station.

Using the integration of double tees for the lower levels and a composite steel system for the upper levels, the author believes this would be a valuable alternative design approach to Union Station. Both of the systems are lighter than the existing and have a lower cost for the material and installation. The double tees would not have an effect on the floor heights since they will be used on the ground floor, mezzanine level, and first floor due to the high floor heights already. All the uppers with the composite steel system would have a reduced thickness of the slab allowing for an increased floor height.

The author believes the use of flat plate with drop panels would not be the best system for the upper floors in Union Station. While the cost of the system is the least expensive of all four systems and the slab thickness is the close to the original, the weight is higher than the others. This is a concern for the site because the soil is not capable of carry a heavy structure.

Below, Table 4 summarizes the comparisons for all four systems. As mentioned before in this technical report, if this is decided upon the author to investigate these two systems as a proposal, more detailed drawings, location of columns, bays, transfer level, and new lateral system would have to be designed.

	COM	MPARISON OF FLOOR SYS	TEMS			
	Post-Tension (Existing)	Double Tee	Composite Steel	Flat Plate w/ Drop Panels		
Location of System	Entire building	Lower Levels	Upper Levels	Upper Levels		
Depth of Slab	7"	4"	5 1/4"	7 1/2"		
Depth of Members	epth of Members Up to 48" For Beams & Girders		W16x31 For Beams & W21x62 For Girders	3" Drop Panels		
Weight	95 psf	90 psf	67 psf	100 psf		
Additiional Fire Proofing	No	No	No	No		
Floor to Floor Height	Varies with Levels	Increased	Incresead	Decreased		
Vibrations	Minimal	Minimal	Minimal	Minimal		
Cost of Floor System	\$26.17	\$20.02	\$21.30	\$16.50		
Fesibility	Existing	Yes	Yes	No		

Table 4: Comparison of Floor Systems

Technical Report II

October 24, 2008

APPENDIX A: PLANS & SECTIONS

Technical Report II

Figure 1: Non-Lateral Members on Typical Floor

Technical Report II

Figure 3: Section of Union Station

Technical Report II

Figure 4: Composite Floor Deck Layout

Technical Report II

Figure 5: Flat Plate w/ Drop Panel Layout

Technical Report II

October 24, 2008

APPENDIX B: POST-TENSION CALCULATIONS

Adviser: M. K. Parfitt

Technical Report II

Technical Report II

	UNION STATION EXPANSION	TELHNECAL REPLY	it II	Pust-Tenston	2
	DESEGN OF EAST-WEST IN	TENTON FRAME			
0	LUADTING: OL= SELFWEIGHT	=	70 psf		
	SIDL= 15 psf LL = 50 psf	(max)			E
	$A = bh = 204(12^{10}/4)(7_{10}) = 1$	1650 in a			
	$S = \frac{bh^{2}}{b} = \frac{acA(1an/A)(7n)^{2}}{b}$	= 1960.113			
	+ AT TIME OF JACKENG =>	f'ci = 3,00 ps;			
		TENSION = 31Fci	= 3/2000= 1641)= 1500 pri nsi	
	+AT SENVICE LOADS => fe	· Saupsi	Durley A.		
	Ter	$v_{\text{SEGN}} = 6\sqrt{fc} = 6\sqrt{5c}$	upi = LIALI psi	- anso psi	
	+ ARMOTING TO ACT 318-08,	18.12.4, PA> 125p	si		
	TARGET LOAD BALANCE : 0.75	S WOL			
0	0.75 Wors 0.75 7.1 (Buper 12m/14] = 5a.5 pcf			
	+ To Amereve althe Fine R 4 RESTRATION SLABS = 34	ATING, CARBONATE " BOTTOM	AGGREGATE		
	UNRESTRATIVED SLADS= 1 = 3,	Ча" В-ПОМ 14" Тор			
	TENDON PROFILE:		pr	TENOUN	
	acro	Ter James	\sim	N.A.	
	ß	201-0" × 201-0"	A 274"	An	
	4				
	TENGEN	ORDINATE	TENDON (CO	2) LOCATTON*	
	INTENT	ton Support- Tup	7.0	n 1	
	INTENTO BIO COM	WE SPAN- BUTTUM	1,0	in En	
0	CNO SVA	IV - ISPINA		213	

Technical Report II

Technical Report II

October 24, 2008

APPENDIX C: DOUBLE TEE CALCULATIONS

Technical Report II

	UNTUN STATION BEPANSION	TECHNICAL	Repurt II	Doursle Tee Dest	GN 1
0	Tweense "T" Beam Douale TEE		X	4004	
	EDGE CIE BUTLOTINE "L" BEAM	-6"			
	+ USING PCI HANOBWK, 6th E Assumptions: fic = Scups;	OITION			
0	tous στομου Ya" & STRANOS LTCHTWETGHT LOADS: SUPERIMPUSED DEAD: LIVE LUADS SUPER	si A= 0.152 in a Concrete as plf [MEP [OFFICE]	FEWISH, PARTERENT)	
	Wu= 1.20+1.6L Wu= 1.2(25psf) + 1.6(scpsf)				
	Wu= 110 psf + Select ELOTALI + 2 Ea" T B8-S STRAND Ps LIU'-O" SPAN	OPPING RESULT	S IN TOTAL DEPT	14 OF 96"]	
	151 pst > 110 pst : OxAy USE &LOTAY +2 Fin Qu	VIBLE TEE			
0					

Adviser: M. K. Parfitt

Technical Report II

	UNION STATION EDANSION	TECHNECAL REPORT II	Double Tee Design	a
1010	DESIGN PRECAST INVENTED	"T" BEAM		
0	WEIGHT OF DOUNSLE TEE =>	65 psf		
	DEAD LOAD: 35pst +65pst			
	90 pst			
	LIVE LOND: 50 pif			
	Wu= 1.20+ 1.6L			++
	Wu= La (90 pst) + 1.6(50 pst)			
	Wa= 188 pat			
	185 por (38.67 (+) = 7270 pl	t		
	* SELECT 34IT36			
	32:-0" SPAN			
	Sole pits TATO pit : OKA	v		
0	USE 34ITT36 AS INVEN	TED "T" BEAM		
	DESTEN EDGE "L" BEAM			
	$ 88 \operatorname{pst}\left(\frac{35.076}{2}\right) = 303.11$	bje		
	+ SELECT QULB32			
	146-S STRANDS 32-0" SPAN			
	you plf > 3434 plf i. UKA	Y		
	USE AULBOR AS "L" BEA	m		
0				
				1.
	A DE LA PARTIE A			

Technical Report II

October 24, 2008

8LDT24 No Topping

Table of safe superimposed service load (psf) and cambers (in.)

Chrond	y _s (end) in.												S	oan,	ft											
Pattern	y _s (center) in.	32	34	36	38	40	42	44	46	48	50	52	54	56	58	60	62	64	66	68	70	72	74	76	78	80
68-S	4.00 4.00	196 1.2 1.5	170 1.3 1.6	149 1.4 1.7	131 1.5 1.8	115 1.6 1.9	102 1.6 1.9	90 1.7 2.0	80 1.8 2.0	72 1.8 2.0	64 1.9 2.0	57 1.9 1.9	51 1.9 1.8	45 1.9 1.7	40 1.8 1.5	36 1.7 1.2	32 1.6 0.8	28 1.4 0.4								
88-S	5.00 5.00			194 1.8 2.3	171 1.9 2.4	152 2.1 2.6	135 2.2 2.7	121 2.3 2.8	108 2.5 2.9	97 2.6 2.9	87 2.7 3.0	79 2.7 3.0	71 2.8 2.9	64 2.8 2.9	58 2.9 2.8	52 2.9 2.6	47 2.8 2.5	43 2.8 2.2	38 2.6 1.9	35 2.5 1.5	31 2.3 0.9	28 2.0 0.3				
108-S	6.00 6.00	1				183 2.4 3.0	164 2.5 3.2	147 2.7 3.4	132 2.9 3.5	119 3.0 3.6	107 3.2 3.7	97 3.3 3.8	87 3.4 3.8	78 3.5 3.8	70 3.6 3.7	64 3.6 3.6	58 3.7 3.5	53 3.7 3.3	48 3.6 3.1	44 3.6 2.8	40 3.5 2.5	36 3.3 2.0	33 3.1 1.5	29 2.9 0.8	26 2.5 0.0	
128-S	7.00 7.00											110 3.7 4.3	99 3.8 4.4	89 3.9 4.4	80 4.0 4.4	72 4.1 4.3	65 4.2 4.2	59 4,2 4.0	53 4.2 3.8	49 4.2 3.6	44 4.1 3.3	40 4.0 2.9	37 3.9 2.4	34 3.7 1.9	31 3.5 1.3	28 3.2 0.6
128-D1	11.67 3.25		and a	14		12	APR -				10		1.1				83 4.8 5.1	76 4.9 5.0	69 5.0 4.9	62 5.1 4.7	57 5.1 4.4	51 5.1 4.0	46 5.0 3.6	42 4.9 3.0	38 4.6 2.3	34 4.3 1.4
148-D1	12.86 3.50																						179 278	51 5.9 4.6	46 5.8 4.1	42 5.7 3.4

8LDT24 + 2

2 in. Normal Weight Topping

Table of safe superimposed service load (psf) and cambers (in.)

Span, ft ys(end) in. Strand ys(center) 52 54 56 58 60 62 64 66 68 70 72 74 Pattern 50 36 38 40 42 44 46 48 28 30 32 34 in. 54 45 178 150 0.7 126 0.8 107 0.8 90 0.9 76 64 31 3.00 48-S 0.9 1.0 1.0 1.0 1.0 1.0 0.9 0.6 3.00 -0.2 0.0 -0.6 0.6 0.7 0.7 0.6 0.6 0.5 0.4 0.2 0.7 55 1.9 0.7 198 170 147 127 1.5 111 1.6 96 1.7 84 1.7 73 1.8 63 1.9 47 40 34 29 4.00 1.9 0.4 1.9 1.9 1.8 0.1 -0.3 -0.8 68-S 1.2 1.3 1.4 4.00 1.0 0.9
 117
 103
 91
 80

 2.3
 2.5
 2.6
 2.7

 1.9
 1.8
 1.7
 1.6
71 2.7 1.4 61 52 2.8 2.8 1.1 0.8 197 172 151 133 45 31 5.00 88-S 2.9 0.5 2.9 2.8 2.8 0.0 -0.5 -1.1 1.8 1.9 2.2 2.1 5.00 19 19 89 76 65 56 3.3 3.4 3.5 3.6 48 41 34 29 3.6 3.7 3.7 3.7 129 115 102 164 146 6.00 186 108-S 3.6 2.4 2.5 2.7 2.9 3.0 3.2 6.00 0.9 0.5 -0.1 -0.7 22 2.1 1.9 1.6 1.3 90 78 68 58 49 42 35 3.8 3.9 4.0 4.1 4.2 4.2 4.2 2.4 2.2 1.9 1.5 1.1 0.5 0.0 104 3.7 35 7.00 128-S 4.2 7.00
 1.1
 0.5
 0.0
 -0.7

 71
 62
 53
 46
 39
 32
 26

 4.8
 4.9
 5.0
 5.1
 5.1
 5.1
 5.0
1.5 1.1 11.67 128-D1 3.25 19 15 0.9 0.3 -0.5 -1.3 -2.3

Strength is based on strain compatibility; bottom tension is limited to $12\sqrt{f_c^2}$; see pages 2–7 through 2–10 for explanation. Shaded values require release strengths higher than 3500 psi.

PCI Design Handbook/Sixth Edition

2-13

Technical Report II

Normal Weight Concrete

October 24, 2008

INVERTED TEE BEAMS

			Sectio	n Propert	ties			
Designation	h in.	h ₁ /h ₂ in./in.	A in. ²	l in.4	у _ь in.	S _b in. ³	St in.3	wt
34IT20	20	12/8	488	16,082	8.43	1.908	1.390	508
34IT24	24	12/12	624	27,825	10.15	2,741	2.009	650
34IT28	28	16/12	696	44,130	11.79	3.743	2.722	725
34IT32	32	20/12	768	65,856	13.50	4.878	3,560	800
34IT36	36	24/12	840	93,616	15.26	6.135	4.514	875
34IT40	40	24/16	976	128,656	16.85	7.635	5.558	1.017
34IT44	44	28/16	1.048	171,157	18.58	9.212	6,733	1.092
34IT48	48	23/16	1,120	221,906	20.34	10,910	8.023	1 167
34IT52	52	36/16	1,192	281,504	22.13	12,721	9,424	1,242
34IT60	60	44/16	1.336	439.623	25.78	17.053	12.847	1.392
34IT40 34IT44 34IT48 34IT52 34IT60	40 44 48 52 60	24/16 28/16 23/16 36/16 44/16	976 1,048 1,120 1,192 1,336	128,656 171,157 221,906 281,504 439,623	16.85 18.58 20.34 22.13 25.78	7,635 9,212 10,910 12,721 17,053	5,558 6,733 8,023 9,424 12,847	

 $f_{pu} = 270,000 \text{ psi}$ $\frac{1}{2} \text{ in. diameter}$

Safe loads shown include 50% superimposed dead load and 50% live load. 800 psi top tension has been allowed, therefore, additional top reinforcement is required. Safe loads can be significantly increased by use of structural composite topping.

3.

low-relaxation strand

Key

7822 – Safe superimposed service load, plf. 0.4 – Estimated camber at erection, in. 0.1 – Estimated long-time camber, in.

Table of safe superimposed service load (plf) and cambers (in.)

2.

Desig-	No.	y _s (end) in.									Spa	n, ft								
nation	Strand	in.	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
34IT20	148-S	2.29 2.29		7822 0.4 0.1	6253 0.5 0.2	5092 0.6 0.2	4209 0.7	3522 0.7	2977 0.8	2537 0.9	2177 1.0	1879 1.1	1629 1.1	1417	1237	1081				
34IT24	178-S	2.59 2.59			9221 0.4 0.2	7524 0.5 0.2	6233 0.6 0.2	5229 0.7 0.2	4432 0.7 0.3	3789 0.8 0.3	3262 0.9 0.3	2826 1.0 0.3	2461 1.1 0.3	2151 1.1 0.3	1887 1.2 0.2	1660 1.2	1463 1.2	1291 1.3	1140	1007
341728	208-S	3.00 3.00	K.				8641 0.5 0.2	7271 0.6 0.2	6183 0.7 0.2	5306 0.7 0.3	4589 0.8 0.3	3994 0.9 0.3	3495 1.0 0.3	3073 1.0 0.3	2713 1.1 0.3	2403 1.2 0.3	2134 1.2 0.3	1900 1.3 0.2	1694 1.3 0.2	1513
34IT32	238-S	3.48 3.48		and a				9589 0.5 0.2	8174 0.6 0.2	7032 0.7 0.3	6097 0.8 0.3	5323 0.8 0.3	4674 0.9 0.3	4124 1.0 0.3	3655 1.0 0.3	3252 1.1 0.3	2902 1.2 0.3	2597 1.2 0.3	2329 1.3 0.3	2093 1.3 0.2
341736	248-S	3.50 3.50								9223 0.6 0.2	8016 0.7 0.2	7015 0.7 0.2	6176 0.8 0.2	5466 0.9 0.2	4860 0.9 0.2	4338 1.0 0.2	3886 1.1 0.2	3492 1.1 0.2	3146 1.2 0.2	2840 1.2 0.2
34IT40	308-S	4.40 4.40				A					9720 0.6 0.3	8510 0.7 0.3	7497 0.8 0.3	6639 0.9 0.3	5907 0.9 0.4	5277 1.0 0.4	4731 1.1 0.4	4254 1.1 0.4	3836 1.2 0.4	3467 1.3 0.4
34IT44	308-S	4.40 4.40											9362 0.7 0.2	8307 0.7 0.2	7406 0.8 0.2	6630 0.9 0.2	5958 0.9 0.2	5372 1.0 0.3	4857 1.0 0.2	4403 1.1 0.2
34IT48	338-S	4.73 4.73													8963 0.8 0.3	8037 0.8 0.3	7234 0.9 0.3	6533 1.0 0.3	5919 1.0 0.3	5376 1.1 0.3
34IT52	368-S	5.22 5.22														9503 0.8 0.3	8564 0.9 0.3	7745 0.9 0.3	7026	6392 1.0 0.3
34IT56	398-S	5.59 5.59									3					0.0	0.0	0.0	8269 1.0 0.3	7532 1.0 0.3
341760	408-S	6.00 6.00																	9564 0.8	8721 0.9 0.3

PCI Design Handbook/Sixth Edition

2-46

Technical Report II

October 24, 2008

L-BEAMS

h1/h2

in./in.

12/8

12/12

16/12

20/12

24/12

24/16

28/16

32/16

36/16

40/16

A in.²

304

384

432

480

528

608

656

704

752

800

h

in.

20

24

28

32

36

40 44

48

52

56

Designation

20LB20

20LB24

20LB28

20LB32

20LB36

20LB40

20LB44

20LB48

20LB52

20LB56

Normal	Weight	Concret	e
Normai	weight	Concret	

S_b in.³

1,163

1,673

2,282

2,971

3,737

4,653

5,610

6,645

7,749

8,926

10,170

St in.³

902

1,301

1,767

2,311

2,930

3,608

4,372

5,208

6,117

7,095

8.143

wt

plf

317

400

450

500

550

633

683

733

783

833

883

271,332 60 44/16 848 20LB60 Check local area for availability of other sizes. Safe loads shown include 50% superimposed dead load and 50% live load. 800 psi top tension has been allowed, therefore, additional top reinforcement is required. Safe loads can be significantly increased by use of structural composite topping. 1 2.

I in.⁴ 10,160

17,568

27,883

41,600

59,119

81,282

108,107

140,133

177,752

221,355

Уь in.

8.74

10.50

12.22

14.00

15.82

17.47

19.27

21.09

24.80

26.68

1/2 in. diameter

low-relaxation strand

3.

Key 6566 - Safe superimposed service load, plf.

0.3 - Estimated camber at erection, in.

0.1 - Estimated long-time camber, in.

Table of safe superimposed service load (plf) and cambers (in.)

Decia	No	v (end) in									Spa	n, ft								
nation	Strand	ys(center) in.	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
20LB20	98-S	2.44 2.44	6566 0.3 0.1	5131 0.4 0.2	4105 0.5 0.2	3345 0.6 0.2	2768 0.7 0.2	2318 0.8 0.2	1961 0.9 0.3	1674 1.0 0.3	1438 1.0 0.3	1243 1.1 0.3	1079 1.2 0.2		1014	1007	060			
20LB24	108-S	2.80 2.80	9577 0.3 0.1	7495 0.3 0.1	6006 0.4 0.1	4904 0.5 0.1	4066 0.5 0.1	3414 0.6 0.2	2896 0.7 0.2	2479 0.8 0.2	2137 0.9 0.2	1854 0.9 0.2	1617	1416	1244	1.1	1.2	1242	1110	992
20LB28	128-S	3.33 3.33			8228 0.4 0.1	6733 0.4 0.1	5596 0.5 0.2	4711 0.6 0.2	4009 0.6 0.2	3443 0.7 0.2	2979 0.8 0.2	2595 0.9 0.2	2273 0.9 0.2	1.0	1/68	1.1	1.2 0.1	1.2	1.2	1.3
20LB32	148-S	3.71 3.71				8942 0.4 0.1	7446 0.5 0.2	6281 0.5 0.2	5356 0.6 0.2	4611 0.7 0.2	4001 0.7 0.2	0.8 0.2	0.9	1.0	1.0 0.3	2143 1.1 0.2	1.2	1.2	1.3 0.2 2011	1.3 0.1 1816
20LB36	168-S	4.25 4.25					9457 0.4 0.2	7988 0.5 0.2	6823 0.5 0.2	5883 0.6 0.2	5113 0.7 0.2	4476 0.8 0.3	0.8 0.3	0.9 0.3	1.0	1.1	1.1 0.3	1.2	1.2	1.3
20LB40	188-S	4.89 4.89						9812 0.4 0.2	8386 0.5 0.2	7235 0.6 0.2	6293 0.6 0.2	5513 0.7 0.2	4858 0.8 0.2	4305 0.8 0.3	3832 0.9 0.3	3425 1.0 0.3	1.0	1.1	1.1	1.2
20LB44	198-5	5.05 5.05								8959 0.5 0.2	7803 0.6 0.2	6845 0.6 0.2	6042 0.7 0.2	5363 0.8 0.2	4783 0.8 0.2	4284 0.9 0.2	0.9	1.0 0.2	1.1 0.2	1.1
20LB48	218-5	5.81 5.81									9226 0.5 0.2	8100 0.6 0.2	7158 0.6 0.2	6360 0.7 0.2	5678 0.8 0.2	0.8	4584 0.9 0.3	4140 0.9 0.3	1.0	1.1
20LB52	2 238-5	6.17 6.17										9634 0.6 0.2	8521 0.6 0.2	7578 0.7 0.2	6774 0.7 0.3	6082 0.8 0.3	5482 0.9 0.3	4958 0.9 0.3	4499 1.0 0.3	1.0
20LB5	6 258-S	6.64 6.64											9954 0.6 0.2	8860 0.7 0.2	7927 0.7 0.3	7124 0.8	6427 0.8 0.3	0.9 0.3	1.0	4810
20LB6	0 278-S	7.33 7.33													9089 0.7 0.3	8173 0.7 0.3	7380 0.8	6688 0.9	6080 0.9 0.3	1 5544 1.0 3 0.3

Technical Report II

October 24, 2008

APPENDIX D: COMPOSITE FLOOR SYSTEM CALCULATIONS

Adviser: M. K. Parfitt

Technical Report II

	UNTURN STATION EXPRANSION TECHNICAL REPORT II COMPOSITE DESCON	1
0	I I K	
	EQ. BEAMY	
	*USENG *USENG AESC STEE MANUAL, 13++ GOFTEON	
	DESCON OF METAL DECK * AROUNDING TO ANSI/UL 363, TO ACHIEVE A 2-42 FERE RATING WHILE USENG LIGHTWEIGHT COMPRETE, 3/4," THICKNESS OF COMMETE ADOVE THE METAL DECK MUST BE USED [110 pcf]	
0	Peno Luno: as pst fic= 3, cw psi Leve Luno: su pse fy= su hsi Wu=ha0+14L	
	Wu= 1.2 (25 psf) + 1.6(supsf) Wu= 110 psf	
	+ Try A SHA" SLAB DEPTH W/ 16 GAGE a" DECK [avent]	
	MAR UNSHUMED SPANE 13.05 ft > 13 ft .: OKAY	
	USE A SIM" SLAB DEPOSIT W/ 16 GAGE ONLIG DECK	

Adviser: M. K. Parfitt

Technical Report II

	UNION STATION E-GAMAION TECHNICAL REPORT II COMPUTINE DESIGN	a
	DESTEN OF BEAM	
0	$M_{W^{2}} = \frac{100 \text{ psf}(13 \text{ ft})(30 \text{ ft})^{2}}{8 (1000)}$	
	Mux Kel K-Et	
	+ Assume atlasin	
	Yaz Siasin-Ilasin= Lluin	3.2
	+ USEN 6 TAALE 3-19 IN THE STEEL MANUAL Ly TRY WIDEST => 313 K-FY > 101 K-FH :: UTCAY [AT R.N.A. 6]	
	EQn= 164 4	
	X 1 2W4"	
0		
	been $\leq \begin{cases} Spany/a = 3064 (PP)/a = 1803 in \\ VySpany = 7.564 (Pa) = 90 in \end{cases}$	
	but = 900 in	
	$\alpha = \frac{ \omega_{1} ^{\kappa}}{0.85(3h_{1}!)(90.n)}$	
	a= 0.71 in Lawsund= liaSin : A Conservative Approache Was MADE	
	# SHEAR STUDS = Zan + Assume V4" SHEAR STUDS, DECK 1, 1 WEAR STUD PEN REG	
	+ FROM TABLE 3-21 IN STEEL MANUAL Qn= 17.20	
	# SHEA STUDS= 1644^{κ} = 9,53 = $10(2\pi)^{2}$ 20 studs	
0	1722 / STUDS	

Adviser: M. K. Parfitt

Technical Report II

	UNION STATION EXPANSION TECHNICAL REPORT II COMPOSITE DESIGN	3									
	DESIGN OF BEAM CONTO										
	CHECK DEFLECTIONS										
-	WIGEST -> BARE STEEL => OMIN: 203"										
	Wome or = Hapst										
	Wbeam = 0.031 H/A										
	Wenishucha lares 20 pst										
	War= (0,042, h)(X134+)+ 0.031 k/4+= 0.575 k/4+										
	WLL= 0,020 hst(13ft)= 0.26 K/ft										
	Wu= 1.2. Wast 1.4 Wz= 1.2(0,575)+1.6/0.24)										
	Wu= 1.11 \$/1+										
	$Mu = \frac{Wul^{4}}{4} = \frac{1}{4} \frac{(1+1)^{4}}{4} = 1015 \times -61 L \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $										
	DEFLECTION DUNTING CONSTRUCTION: EDMY LANK AT DEAD WETCHT]										
-	ALIN [1/340]										
	$\Delta = \frac{SW_0(L_0)^{L_0}(T_{TAB})}{2W_0 T_0}$										
	0,575										
	lin= <u>S(as)(30H)4(170k)</u> 344(24cm)(Import)										
	Inguinel = 361 in 4										
	Iwiter 31= 375 > Ingunal i. ORAY										
	LIVE LOND DEFLECTION.										
	Wer- Sopst(134)-0.65 H/4+ [4300]										
	+ FROM TARLE 3-DU IN THE STEE MANUAL, USE ILD= 7191,14 Fre WILMER										
	$\Delta = \frac{5(0.65h/4)(30H)^4(17RE)}{384(1200)} = 0.56611 (1in : 01017)$										
0	+ FUR TOTAL DEFLECTION. [1/240]										
	A= S(1,14/F)(30F)4(MAL) = 0,9612 1,5 in 1.04Ay BEAM										
	34=(3=9,000)(7=1+)										

Adviser: M. K. Parfitt

Technical Report II

	UNION STATION EXPANSION TECHNICAL REPORT II COMPOSITE DESIGN	4
	DESIGN OF GIRDER	
$\overline{\mathbf{O}}$	e e	
	1 · · · ·	
	Ra t t a t	
	$b = \left[\frac{S(Km)}{1000}\right] (y)$	
	p= Lla.gk	
	* USING TABLE 3-23 IN THE STEEL MANUAL,	
	RA= Ro= P= La. qn	
	Minure: Mars Pa	
	Max = 47accric(136+)	
	M= 558 K-ft	
$\overline{\mathbf{O}}$	*Assume a= 1.25 in	
	Ya= LIDIN	
	NUSENCE TABLE 3-14 In THE MANUAL LA TRY WALLER == 7 7924-FF > SSEV-FF : OKA-1 EAT P.N.A. #6]	
	EQn: 317 *	
	bit $\leq \begin{cases} Searting = 30(1(1a)(1)/a = 1b) \\ Searting = 30(1(1a)/g = 1b) \\ Searting = 107 \\ S$	
	an and the state is a function of American have the	
	ales (344) (117)	
	# SHEAR STUDS = Ean + Asyme 3/4" SHEAN STUDS, DECK //, Le/hr L1.5	
	* From TAGLE 3-DI To THE MANUAL	
C		
	"Shean struct Star = $12.5 + 19(a_1) = 58$ struct $17.1 \times / struct$	

Adviser: M. K. Parfitt

Technical Report II

	UNTON STATTON E-PANETON TELINIZAL REPORT II COMPUTITE DESIGN	5
	Destan De Graden Cont'o	
0	CHECK DEFLECTIONS	
	Walt 42=> BANE STEEL=> OMn=54012-54	
	WEENE + DECK = LIDA PSE	
	Worndon = Rubau/C+	
	$w_{ol} = (0,0012 hst)(306+) + 0,062,076+ = 1.32.$	
	Winnermoerting Love = des pst.	
	Will = 0,0000 hit (30.04) - 0,00 10/64	
	Wa= 1.2 (1.32)+ lib(crub)= 2.54 K/4+	
	$Mu = \frac{wult}{c} = \frac{a.su.k/r+(3.ay.r+)^{s}}{s} = 485.k-c+c.qmn .: 0.kny$	
	DEFLECTION DUNENG CONSTRUCTION	
0	D= Ysues 13.	
	D= <u>S(13A)(3941)4(17A1)</u> = 1.43.0 364 (Agaw)(1320)	
	+ SENCE CONSTRUCTION LOND STOLEDN'T CONTROL, HAVE A 314" CAMBER WETHEN THE MEMBER	
	1413in - Oitsin = dibin (1/300 and (1" , CKAY	
	LIVE LEAD DEFLECTION [410]	
	Were Sups Elsologie 1. Superior	
	S= S(11584)(159)4(1722) = 2.02 in - 3/4" CAMEEN: 1.77 in 2 4/360 .: UKAY 344(144,00)(1324)	
	Use Walx6a (36) with 3/4" CAMBER]	
0		
~		

Technical Report II

October 24, 2008

APPENDIX E: FLAT PLATE WITH DROP PANELS CALCULATIONS

Technical Report II

Adviser: M. K. Parfitt

Technical Report II

UNTON STATI	UN EGANGTON	TECHNICAL REPU	NT I FLAT RA	TE W/ DRUP PANEL
Ì'/an <u>e</u>				CS FRAME A MU = SHACH
I VAMS				
j.]			
+From PAGE	294 OF ACT 3	918-0 8 -		
FRAME A:				
	(M+ = 0.	.35M0 = 0.35(380A-)	$ c\rangle = +13c_1 c_{1-1}c$	
TRANSVERSE I.) NEGATIVE	- 248 OF OTSTMABUTER MUMENT C INTE	+134 -248 UN OF LONGITUDINA INTON SUPRONT	MUMENT	
TRANSVENSE 1.) NEGATIVE 8.1/1= 19.547 BEO A. 8.1/1=0	- 248 OF OTSTMARSUFTO MOMENT C INTE (3064 - 0.65 Ma BEAMS	+134 -248 WW OF LONGITUDINA Inton Supront	MUMENT	
TRANSVENSE I.) NECATIVE Sa/Ri= 15.544 BEO A Sa/Ri=0 JWTENPOLATI L/A	- 2448 OF OTSTMARSUFTO MOMENT C INTE (3064 - 0.65 Ma BEAMS CON	+ 134 - 248 un OF LONGITUDINA Inton Supront	MUMENT	
TRANSVENSE I.) NEGATIVE $R_{4}/R_{1} = R_{1.5}R_{4}$ $B_{6}=0$ $d^{1}a_{4}/R_{1}=0$ JUNTENPOLATI R_{4}/R_{1} $B_{6}=0$	- 248 OE OTSTMABUTER MUMENT C INTE 3064 0.65 MU BEAMS J NU BEAMS CON 0.50 -75°70	+134 -348 W OF LONGITUDINA INTON SUPRINT 0,45 1.0 1570 7507	L MUMENT	
TRANSVERSE 1.) NEGATIVE 1.)	-245 OF OTSTMARSUTED MOMENT C INTE 3014 - 0.105 MU BEAMS J NU BEAMS O.SO -15070 15070 16	+134 -248 W OF LONGTTUDNA INTON SUPRONT 0,65 1.0 1.0 1.0 1.570 7507 70 TO CS = 0.715 (-2 70 TO MS = 0.255(-2)	L Mument $L_{10} = -166 + -16$ $L_{10} = -6a + -16$	
TRANSVERSE 1.) NEGATIVE 1.)	-248 OF OTSTMARSUFER MOMENT & INTE 3014 - 0.165 MU BEAMS O.SO TSUZO IL	+134 -248 W OF LONGTUDNA INTON SUPRONT 0,45 1.0 5.70 75 75 70 TO CS = 0.715 (-2 70 TO CS = 0.715 (-2 70 TO MS = 0.255(-2)	L Mument $L_{10} = -186 + -16$ $L_{10} = -63 + -16$	

Adviser: M. K. Parfitt

Technical Report II

	UNTON STATION BODANS	TON TECHNICAL R	epunt II	FLAT PLATE W Drup PLATE	3
	2) POSETEVE MUMERUT C	CINTENTON SUPPORT			
	1s/h 0.50	0.65 1.0			1.20
~	Bt:0 60070	60070 60070			
	NIN/15 FORM				1 1 2
					1.1.1.1.1
	- 602	Tu CS = 0,60 (+134) =	SU A-K		
	+ 134 A-16 - 407	To MS = OLIO (+134) =	SLI G-K		
	FRAME A: TOTAL WO	1+= 19.5 6+, cs = 9.75 ft,	Ms = 9,715.f+		
	Total MUMENT	- 348 + 134	-348		
	CC SLAN	-186 +80	-166		
	MS SLAPS	-62 +54	-62		
	DESTGN OF SLAB RETNE	MEEMENT IN Col. STAS	r.P	[Assume #5 BAR]	
	ITEM NU. DESCRIPTE	ON TATENTON	2 SPAN		1.0
		h-	ht		
	L) Mu (A-12) -186	+60		1 112
	a) when the bot	Drup PAREL 96	96		
	The bel. S	mie (in)	1.		100
	3.) EFFECTIVE L	leonid(in) 551	6.44		
U	(1) Mn= ~ / 0,9	(t+-1c) -do7	+ 89		1.00
	6) R- bd	- 255	+ cree		1000
	7) Ar-Chul li	2) 495/	288 1		1.00
	Ar - 0.Walt	2.77.	1.76		
	9.) N= GREATE 7	un & 16 1	16 /		
	0.31				
	ku) Nmn= hridth	Stron 5	7		
	at				
					1.70
		- (14)*5	(A) #5		1.25
		-k-			1.1
		T			
		L (10) #S			1.5
			L		
					- 12
					1.1
	THE PROPERTY				113.66
	꺍햜 뤙셵변홂쎿렮띡				11.55
					1.4
					1000
					1.000

Adviser: M. K. Parfitt

Technical Report II

	UNION STATE	ON GOPANSTON	TECHNICAL	REPORT II		FLAT RATE	4
	DESTON OF	SLAG REINFUNCEN	NENT IN 1	NEODLE STAEP		[Assume #5 BAN]	
0	ITEM NU	DELATETION		INTENTUR M-	SPAN	M+	
	1)	10 10 V		-102		-	
	2)	Mu (4-12)		100		+>-1	
	2)			11 1		C CI	
	4)	Ma= m/0.9 (A	-14)	- 69		+ 60	
	S)	R= Mu/hdz		-171		+ 18a	
	6)	P		0,00395		0.00312	
	7.)	As= Pbel (in2)		2.22		2.13 /	
	63	Asimo = occurabe ((n ²)	1.76		1.76	
	9.)	N= GABATER Ton.	8_	8		6	Land In Contra
		0.31					
	10.)	Nom: milen stop		81		8/	
		at					
	1		in:		In.	1	
	1		in i		1		
U	-	10X+1 70)#1	7(1) = 0	1 (1)+5 1 (1)=5	1 11125		
			1	1 1	T.		
	Ŧ	1	1	1 1.	1	· F	
		1 (14)=5 (4)=5	1147	(16)42 (10)#C	1100 125		
			1	¥	¥	-1	
		(B)*5 (A # 9	5 765 #5 -	Colors VA = S	BINS		
		¥	4	¥ ¥	¥,		
			ini		IT	ř	
			iLI:			1 1	
	1		-				
		A		A			
				-			
	and the second se						

Adviser: M. K. Parfitt

Technical Report II

	UNION STATEON EXPANELON	TECHNICAL REPURT I	FLAT PLATE W/ ONLP PANEL	5
15.1.1		Sector and the part of the sec		
	MENIAUM BATENSIONS FUR RECONFURCEMENT ISLAGS WITHOUT BEAMS			
	뛗볞븮놂칅왌긷뽜꽖먺뙁놂 <u>줂뎢</u> ?듷싞슻꽖作뽜녇슻쿅콓픷렮킿봡쒼렮볞엹뫝깇탒윩			
1	+ ACI 315-05 Froune 13.3.6. COLUMN STATO RETNEONCEMENT			
~				
	(234)			
	&			
	15 #	c 5.6ft 0.2la 5.6ft	(7)tts	-
	Centre		5 1 1	
				10/201
	t In= a	ston X X In-	35-0" T	
				122
	MEDDLE STAIP REINFURCEMENT			1.1.1.1
		SECTION A.A		
		644 CL 0.200 0.166	+ 11	H
		1 #5	11 2332	
	<u></u>			
	L (3) #S			
		CONTINUE		
				-
•				
				-
				T
121122				

Adviser: M. K. Parfitt

Technical Report II

